- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Cowie, Rory (1)
-
Navarre-Sitchler, Alexis (1)
-
Newman, Connor_P (1)
-
Wilkin, Richard_T (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Groundwater flow paths and processes that govern metal mobility and transport are difficult to characterize in mountainous bedrock watersheds. Despite the difficulty in holistic characterization, conceptual understanding of subsurface hydrologic and geochemical processes is key to developing remediation plans for locations affected by acid mine drainage, such as the Upper Animas River watershed in southwestern Colorado, USA. Stable isotopes of water and rare earth elements were utilized to evaluate groundwater flow and metal sources within this complex catchment. Stable isotope samples collected from draining mine adits and springs display systematic spatial variation wherein sample sites at higher elevations have greater seasonal variability than sites at lower elevations. The Upper Cement Creek watershed, where multiple draining mines are present, displays the lowest seasonal variation in stable isotopic signatures, potentially indicating the presence of a large, well-mixed volume of groundwater storage or interbasin groundwater flow. Rare earth elements display statistically significant variation between different alteration styles in the catchment. Overprinting of regional propylitic alteration is evident based on enrichment of middle rare earth elements in acidic springs and mines that are not spatially associated with surficial exposures of acid generating alteration styles. Europium anomaly and middle rare earth enrichment signatures from two flooded mine tunnels on opposite sides of a watershed divide indicate connections to the same subsurface flooded mine workings.more » « less
An official website of the United States government
